Performance study of multiuser interference mitigation schemes for hybrid broadband multibeam satellite architectures

نویسندگان

  • Jesús Arnau
  • Bertrand Devillers
  • Carlos Mosquera
  • Ana I. Pérez-Neira
چکیده

As the demand for higher throughput satellites increases, multibeam architectures with smaller beam spots are becoming common place. If the same frequency is strongly reused, the resulting interference when serving simultaneously many users requires some sort of pre or post-cancelation process. This article focuses on precoding and multiuser detection schemes for multibeam satellites, comparing hybrid on-board on-ground beamforming techniques with fully ground-based beamforming. Both techniques rely on the exchange of radiating element signals between the satellite and the corresponding gateway but, in the latter case, the interference mitigation process acts on all the radiating signals instead of the user beams directly, with the corresponding extra degrees of freedom for those cases for which the number of radiating elements is higher than the number of user beams. The analysis carried out in this study has shown that the potential advantage of ground-based beamforming may exceed 20% of the total throughput.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear and nonlinear techniques for multibeam joint processing in satellite communications

Existing satellite communication standards such as DVB-S2, operate under highly-efficient adaptive coding and modulation schemes thus making significant progress in improving the spectral efficiencies of digital satellite broadcast systems. However, the constantly increasing demand for broadband and interactive satellite links emanates the need to apply novel interference mitigation techniques,...

متن کامل

Interference Mitigation for the Reverse-Link of Interactive Satellite Networks

This paper presents some of the results of a study aimed at investigating and optimizing possible Interference Mitigation techniques for wideband fixed-service satellite systems. In particular this paper discusses the performance improvements that can be achieved in the user-to-Hub link (Reverse-Link, RL) of a multibeam satellite system by using more advanced processing techniques than those im...

متن کامل

Multiuser Detection in Asynchronous Multibeam Communications

This paper deals with multi-user detection techniques in asynchronous multibeam satellite communications. The proposed solutions are based on successive interference cancellation architecture (SIC) and channel decoding algorithms. The aim of these detection methods is to reduce the effect of cochannel interference due to co-frequency access, and consequently, improves the capacity of the mulitb...

متن کامل

Performance Analysis of Integrated Wireless Sensor and Multibeam Satellite Networks Under Terrestrial Interference

This paper investigates the performance of integrated wireless sensor and multibeam satellite networks (IWSMSNs) under terrestrial interference. The IWSMSNs constitute sensor nodes (SNs), satellite sinks (SSs), multibeam satellite and remote monitoring hosts (RMHs). The multibeam satellite covers multiple beams and multiple SSs in each beam. The SSs can be directly used as SNs to transmit sensi...

متن کامل

Interference Mitigation Techniques for Broadband Satellite Systems

This paper presents an overview of possible interference mitigation techniques aiming at increasing the system capacity of broadband multimedia satellite systems. A multi-star network topology using a bent-pipe transparent satellite is assumed. After a general overview, the paper concentrates on the assessment of Linear Precoding techniques for increasing the potential system capacity on the Fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Wireless Comm. and Networking

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012